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“Real opponents don’t play GTO. 

Hold’em API models how they 

actually behave.” 

Most poker AI systems are trained using either theoretical models or datasets with complete 

information—yet in real games, the majority of hands do not go to showdown. This introduces a 

fundamental challenge: how can we model an opponent’s true range and tendencies when we 

rarely see their cards? 

This white paper presents the methodology behind Hold’em API, a system designed to simulate 

realistic No-Limit Hold’em opponents using incomplete hand history data, specifically from online micro- 

to mid-stakes games. The system uses a combination of Bayesian inference and neural networks 

to estimate player ranges and predict likely actions—folds, calls, raises, and bet sizes—at various 

decision points. 

Key innovations include: 

• A Bayesian framework for updating opponent ranges in real time using 𝑃(𝐸 | 𝐻) learned 

from data 

• A neural network model that approximates 𝑃(𝑎𝑐𝑡𝑖𝑜𝑛, 𝑠𝑖𝑧𝑖𝑛𝑔 | ℎ𝑎𝑛𝑑, 𝑠𝑡𝑎𝑡𝑒, 𝑠𝑡𝑎𝑘𝑒 𝑙𝑒𝑣𝑒𝑙) 

• An API interface that makes real player behavior queryable and pluggable into bots, 

simulations, or poker training tools 

By modeling players by stake level (e.g., $0.05/$0.10 vs. $1/$2), Hold’em API captures the true 

variation in playstyles across the ecosystem, making it possible to train agents or build systems 

that exploit real tendencies, not just theoretical ones. 

This paper outlines the technical design, data challenges, model architecture, and use cases for 

developers, researchers, and companies building poker AI or poker-related tools. It bridges the gap 

between academic game theory and the messy reality of online poker behavior. 
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Introduction 

In No-Limit Texas Hold’em, predicting an opponent’s behavior is fundamental to gaining an edge. Yet 

building reliable models of player behavior is extremely difficult in real-world conditions. Most hand 

histories contain incomplete data, as the majority of hands end before showdown. This means we 

rarely see what cards a player held—only how they acted. 

Despite this, player actions across positions, boards, and stack depths reveal valuable patterns. By 

modeling these patterns probabilistically, we can infer a player’s tendencies and construct stake-

specific behavioral models. These models are essential for: 

• Training AI agents to exploit real player pools 

• Simulating lifelike opponents in poker games 

• Analyzing decision quality in real-time or post-hand review 

This paper introduces the architecture behind Hold’em API, a system built to model real poker players 

using incomplete public hand histories. Unlike traditional GTO solvers or static range estimators, 

Hold’em API is trained on millions of actual hands from micro to mid stakes, and is designed to 

replicate the behavior of players in those pools as accurately as possible. 

 
Model Description 

Fold / Continue  
Given a player's hand, position, stack, and the state of the 
game, will they fold or continue? 

Call / Raise & 
 Check / Bet 

If continuing, what type of action will they take? Passive or 
aggressive? Are they likely to check, call, raise, or bet? 

Bet Sizing 
If a player chooses to bet or raise, what is the likely sizing 
bucket (e.g., small bet, half pot, overbet)? 
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Each stage is handled as a separate but sequential model, allowing us to represent the conditional 

decision structure of real players. Together, these stages allow us to predict P(action, size | 

hand, context, stake) — even when the player's exact hand is unknown. 

 

Throughout the paper, we’ll describe: 

• How we gather and preprocess real online poker data 

• How we model player behavior using neural networks and Bayesian updates 

• How the API exposes this intelligence for bot training, simulation, and analytics 

By the end, you’ll have a detailed view of how realistic, data-driven poker opponent modeling can be 

achieved—despite imperfect information. 

 

Background / Context 

The field of poker AI has seen major advances in recent years, especially in the development of game-

theoretic solvers like Libratus and Pluribus. These systems have demonstrated superhuman 

performance in heads-up and multi-player games by computing Nash equilibrium strategies. 

However, they rely on complete information about the game tree, perfect abstractions, and—critically—

do not reflect how actual human players behave at low to mid stakes. 

In practice, most poker hands: 

• End before showdown, making hole cards invisible 

• Involve players who deviate significantly from optimal strategy 

• Are played with wide variance in sizing, aggression, and discipline 

As a result, there is a growing need for pragmatic models that simulate human behavior—not 

idealized opponents. 
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Approach Description 

Static Range Estimators 
Tools like Flopzilla and Equilab assume fixed hand ranges per 
position and don’t adjust based on observed behavior. 

GTO Solvers and 
Exploiters 

Tools like PioSOLVER compute unexploitable strategies based 
on tree resolution, not on real player tendencies. 

Rule-Based Simulations 
or Simple Heuristics 

Some poker training tools use scripts or logic trees (“If board is 
dry, bet 30%”) which lack depth and adaptability. 

 

None of these systems attempt to learn from actual online hand histories with incomplete 

information. That’s where Hold’em API differs. 

 

Our Contribution 

We present a system that: 

• Trains on incomplete but abundant data (millions of online hands) 

• Uses Bayesian inference to refine hidden opponent ranges 

• Predicts real-player behavior using a three-stage neural model: 

1. Fold / Continue 

2. Call / Raise & Check / Bet 

3. Bet Sizing 

This structure not only reflects how decisions are made in sequence—it also aligns with the observable 

structure of hand histories, where bet sizes and actions are logged even without knowing the hole 

cards. 
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• Different models are created for each stake level, capturing the nuances of how $0.05/$0.10 

players differ from $1/$2 regulars—making it possible to simulate, analyze, and exploit real pools 

with precision. 

 

Data Pipeline and Model Inputs 

Modeling opponent behavior from partial information requires careful handling of noisy, biased, and 

incomplete data. In this section, we describe how Hold’em API collects, processes, and structures data 

from online hand histories to create training-ready input for all three stages of its behavioral model. 

 

Hand History Collection 

We collect publicly accessible PokerStars hand histories, recorded either via observer accounts or 

from parsed logs. These hand histories include: 

• Player positions and stack sizes 

• Actions (fold, call, raise, check, bet) with timestamps and sizing 

• Public board cards per street 

• Showdown hole cards (only when revealed) 

The result is a massive dataset with high action visibility but partial hand visibility—ideal for 

modeling real-world decision points, yet challenging for hand labeling. 

 

Preprocessing Pipeline 

Each hand is parsed and split into a series of decision points, one per player action. At each point, 

we extract: 

• Game context: street, position, stack size, pot size, number of players 

• Board cards: as revealed so far 
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• Prior actions: sequence of bets/calls/folds prior to decision 

• (If available) Player hand: only included when revealed at showdown 

• Action taken: fold, call, bet, raise, check 

• Bet size: as a fraction of the pot 

Each decision becomes a labeled training row for one or more of the three model stages. 

 

Input Encoding 

Inputs to the models are encoded as fixed-size numerical vectors: 

 
Feature Group Example Features 

Hand Encoding One-hot vector for combo (if known), masked if unknown 

Game State Position, stack size (in BB), pot size, street 

Board Cards One-hot per suit and rank for each street 

Stake Level 

Separate models are trained for each stake level to accurately 
capture differences in player behavior. The stake is encoded as 

a categorical input or used to route requests to the correct 
model. 

 

For cases where the player’s hand is not known (non-showdown), we treat the hand as a latent 

variable during training and prediction, using priors and updates. 
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Model Labels (Supervised Targets) 

Each model stage has a distinct label set: 

Model Stage Label Type 

Fold / Continue  Binary: 0 (fold), 1 (continue) 

Call / Raise & 

Check / Bet 
Binary: 0 (call / check), 1 (raise / bet) 

Bet Sizing  Categorical: size bucket (e.g., ≤25%, 25–40%, etc.) 
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Priors and Assumptions 

To handle unknown hole cards: 

• We use a stake-specific preflop range as the prior (e.g., 22+, A2s+, K9s+ for CO at 

$0.10/$0.25) 

• This prior is updated per action using Bayes’ Theorem, forming a refined posterior range 

For training data where hands are revealed, we treat the hand as observed and update model weights 

accordingly. 

 

This structured pipeline enables us to build robust models from imperfect data—setting the foundation 

for the Fold / Continue, Action Selection, and Sizing Prediction models described in the next 

sections. 

 

Fold vs. Continue Model 

The first stage of Hold’em API’s decision model determines whether a player chooses to fold or 

continue at a given decision point. This binary classification is foundational, as it gates all subsequent 

decisions (e.g., whether a player will raise, call, or bet). 

 

Objective 

We model the probability: 

𝑃(𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 | 𝐻, 𝑆) 

Where: 

• 𝐻 is the player's hand (if known or estimated) 

• 𝑆 is the game state (street, stack size, pot size, position, board, and prior actions) 
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The model outputs a probability between 0 and 1 representing the likelihood that a player in a specific 

context will take any action other than folding. 

 

Architecture 

This model is a binary classifier (logistic regression over a neural net), trained with: 

• Input: Encoded vector of hand (when available), position, stack size, pot, board, and prior 

actions 

• Output: Sigmoid activation → scalar probability of "continue" 

For unseen hands (i.e., non-showdown), we use a prior range distribution 𝑃(𝐻𝑖) and calculate expected 

continuation probability across all combos: 

𝑃(𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑖𝑒 | 𝑆) =  ∑ 𝑃(𝐻𝑖  | 𝑆)

𝑖

⋅ 𝑃(𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒 | 𝐻, 𝑆) 

 

Training Labels 

Training examples are labeled: 

• 0 if the player folds at their decision point 

• 1 if the player checks, calls, bets, or raises 

Examples with known hole cards are directly supervised. For unknown hands, only the observed action 

is used during inference or range updates (not for gradient updates). 

 

Bias Handling 

Fold decisions are overrepresented in early streets and weak positions. To avoid imbalance: 

• We under-sample folds in the training set 

• Use stratified batch sampling to ensure position/street diversity 
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• Train separate models or embed stake-level priors 

 

Example Prediction 

 

 

 

The continuation probability (0.68 in this case) feeds directly into the next stage: Action Selection — 

determining how the player continues. 

 

Action Selector Model 

Once a player chooses to continue rather than fold, the next question is: what type of action will 

they take? Will they call, raise, bet, or check? This is where we model the player's behavioral 

tendencies conditioned on the decision to continue. 

 

Input: 

{ 

  "position": 3, 

  "stackSize": 60, 

  "potSize": 9.5, 

  "board": ["Jh", "8d", "4c"], 

  "priorActions": ["open", "call"], 

  "street": "flop" 

} 

 

Output: 

{ 

  "fold": 0.32, 

  "continue": 0.68 

} 
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Objective 

This model estimates: 

𝑃(𝐴 ∣ 𝐻, 𝑆, 𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑒)  

Where: 

• 𝐴 ∈ {𝒄𝒉𝒆𝒄𝒌, 𝒄𝒂𝒍𝒍, 𝒃𝒆𝒕, 𝒓𝒂𝒊𝒔𝒆} 

• 𝐻 is the player’s hand (when known or estimated) 

• 𝑆 is the current state of the game (position, stack, pot, board, prior actions, street) 

The model outputs a categorical distribution over legal action types. 

 

Architecture 

This is a binary classification model, trained only on decision points where the player did not fold. 

It predicts whether the action taken was passive (call/check) or aggressive (raise/bet). 

Inputs: 

• Encoded hand (when available) 

• Position, stack size, pot size 

• Board texture and street 

• Sequence of prior actions 

• Stake level or stake embedding 

Output: 

• Binary: 0 (call/check), 1 (raise/bet) 

 

Legal Action Filtering 

The output space depends on the context: 

• Preflop facing a raise: call, raise 

• Flop first to act: check, bet 

• Turn facing a bet: call, raise 

• No bet to call: check, bet 

Illegal actions are masked during prediction and training so that the softmax only distributes probability 

over valid moves. 
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Example Prediction 

 

 

 

Notes on Labeling 

Labels are derived from observed actions after a fold decision has been ruled out. When hole 

cards are known, labels are tied to both the action and hand. When hole cards are not revealed, the 

action is used to refine the hand distribution (via the range updater, not for gradient updates). 

 

Integration Flow 

If a player is predicted to continue (from the Fold/Continue model), the output from this model 

determines: 

Passive vs. aggressive behavior 

Whether to proceed to Bet Sizing (if action = bet or raise) 

Input: 

{ 

  "position": 5, 

  "stackSize": 75, 

  "potSize": 22, 

  "board": ["Qd", "7s", "3s"], 

  "priorActions": ["open", "call", "check"], 

  "street": "flop" 

} 

 

Output: 

{ 

  "check": 0.13, 

  "bet": 0.56, 

  "raise": 0.00, 

  "call": 0.31 

} 
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Bet Sizing Model 

Once a player is predicted to bet or raise, the final question is: how much will they wager? Real-

world opponents use a variety of sizing strategies—some consistent, others erratic—and these vary 

dramatically by stake level, position, and street. 

The Bet Sizing Model estimates the most likely sizing range a player would use given the context of 

the hand and their action choice. 

 

Objective 

𝑃(𝑆𝑏 ∣ 𝐻, 𝑆, 𝐴 = 𝑏𝑒𝑡 𝑜𝑟 𝑟𝑎𝑖𝑠𝑒) 

Where: 

• 𝑆𝑏  is the bet size bucket (e.g., 25% pot, 40%, 60%, overbet) 

• 𝐻 is the hand (if known or inferred) 

• 𝑆 is the game state 

• The player has already been predicted to bet or raise 

 

Sizing Buckets 

We categorize bet sizes into discrete buckets (based on pot size at time of action): 

Bucket ID Pot % Range Description 

1 ≤ 25% Small bet 

2 26–40% Standard C-bet 
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Bucket ID Pot % Range Description 

3 41–60% Medium sizing 

4 61–85% Large bet 

5 86–115% Pot-size 

6 > 115% Overbet 

7 All-in (non-bluff) Value shove 

8 All-in (short stack) Jam or bust 

   

These buckets are stake-aware—low-stakes players tend to favor certain sizings (e.g., 33%, 100%) 

much more than others. 

 

Architecture 

This model is a multi-class classifier trained on: 

• Context features (board, street, pot, position) 

• Prior actions 

• Player stack and effective stack 

• Hand (if known) 

It outputs a softmax distribution over the sizing buckets. 
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Example Prediction 

 

 

This output can be sampled stochastically for simulations or used to return the most likely sizing 

bucket. 

 

Challenges & Adjustments 

• Stack-size capped bets are normalized so all actions fit within bucketed categories 

• Bias toward common sizes (e.g., 33%, 100%) is learned per stake during training 

• Illegal actions (e.g., overbet when stack is too short) are masked during prediction 

 

Input: 

{ 

  "position": 2, 

  "stackSize": 45, 

  "potSize": 30, 

  "board": ["Td", "9d", "6c"], 

  "street": "turn", 

  "priorActions": ["open", "call", "check", "bet", "call"] 

} 

 

Output: 

{ 

  "25%": 0.10, 

  "40%": 0.51, 

  "60%": 0.29, 

  "85%": 0.08, 

  "Overbet": 0.01, 

  "All-in": 0.01 

} 
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Integration Flow 

This model is only called if the Raise/Call Model predicts a bet or raise. The output sizing bucket is 

passed downstream to simulation engines or bots using Hold’em API. 

 

 

Bayesian Range Update 

In real poker play, we rarely see opponents' hole cards—yet every action they take reveals something 

about what they might hold. To simulate realistic behavior and refine predictions over time, Hold’em 

API uses Bayesian inference to update a player’s hand range based on their observed actions. 

 

Objective 

We want to update a player’s estimated range 𝑃(𝐻𝑖) after observing an action 𝐸 (e.g., call, raise, fold). 

The goal is to compute: 

𝑃(𝐻𝑖 | 𝐸) =
𝑃(𝐸 | 𝐻𝑖) ⋅ 𝑃(𝐻𝑖)

∑ 𝑃(𝐸 |𝑗  𝐻𝑗) ⋅ 𝑃(𝐻𝑗)
 

Where: 

•  𝐻𝑖 = a specific hand (e.g., AhKd) 

• 𝑃(𝐻𝑖) = prior probability of that hand being in the player’s range 

• 𝑃(𝐸 | 𝐻𝑖) = likelihood of taking the action 𝐸 with hand 𝐻𝑖, derived from the player-decision 

model 

• The denominator is a normalization constant over all possible hands 
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Inputs and Outputs 

 

Inputs: 

• Prior range (list of hand combos + probabilities) 

• Observed action: e.g., “3-bet to 9BB on BTN” 

• Game state (street, board, stack sizes, pot, position) 

• Stake level 

Output: 

• Updated hand distribution 𝑃(𝐻𝑖 | 𝐸), normalized 

• Can be used for next street predictions or equity calculations 

 

Update Examples 

Example: Preflop 3-bet from Button 

  

Prior Range: 

{ 

  "AhKd": 0.022, 

  "KJo": 0.016, 

  "98s": 0.020, 

  "22": 0.015 

} 

 

... 

... 

... 
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The model increases probability on hands likely to take that action, and sharply reduces weight on 

speculative or weak hands. 

 

Implementation 

This logic powers the /update-range API endpoint. Internally, it: 

• Pulls 𝑃(𝐸 | 𝐻𝑖) from the trained player-decision model 

• Multiplies it with the prior range 

• Normalizes the posterior across all valid hands 

 

... 

... 

... 

 

Observed Action: 

{ 

  "position": 3, 

  "action": "3bet", 

  "amount": 9, 

  "street": "preflop" 

} 

 

Updated Range (posterior): 

{ 

  "AhKd": 0.072, 

  "KJo": 0.006, 

  "98s": 0.003, 

  "22": 0.001 

} 
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Use Cases 

• Multi-street simulations where ranges evolve over time 

• Bot training: adversarial bots can adapt based on range narrowing 

• Coaching tools: show users what hands an opponent likely held 

• Equity-aware decision trees based on updated villain range 

 

Limitations 

• Assumes player behavior is consistent with modeled 𝑃(𝐸 | 𝐻𝑖) 

• Breaks down if opponent is highly unbalanced or deceptive 

• Garbage priors yield garbage posteriors: initial ranges must be realistic 

 

By integrating this update loop, Hold’em API ensures that downstream actions—equity calculations, 

simulations, and AI predictions—are based not on static assumptions, but on evolving, realistic 

opponent behavior. 

 

Use Cases 

Poker software has historically relied on either theoretical models or scripted logic to simulate 

opponents. But real players—especially in online cash games—don’t play by game theory. They play 

with leaks, patterns, biases, and predictable mistakes. 

Hold’em API enables developers, researchers, and product builders to simulate those real behaviors 

with precision. By querying realistic player actions, bet sizing patterns, and dynamically updated hand 

ranges, users can build smarter systems that train against or respond to real-world tendencies—filtered 

by stake, position, and situation. 
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The following use cases show how the API can be applied across bot development, game simulation, 

coaching tools, and strategy analysis. 

 

Bot Training 

Train poker bots against real-stake players instead of theory. Use /player-decision to simulate opponent 

moves, and /update-range to track evolving ranges. 

Game Development 

Populate poker games with lifelike NPCs that play like actual $0.25/$0.50 players using player-decision 

probabilities and bet size realism. 

Coaching & Leak Detection 

Highlight where a user’s decisions diverge from actual pool behavior. Use range-updates and action 

likelihoods to illustrate what their opponent probably held. 

Strategy Research 

Compare EV lines against evolving ranges across streets, or test exploit strategies based on common 

pool errors at each stake. 

 

Conclusion 

Modeling poker opponents in the real world is fundamentally different from solving idealized game 

trees. Players at micro to mid stakes don’t follow GTO—they follow habits, patterns, and pool-wide 

tendencies. And yet, most available tools either ignore these patterns or lack the data and architecture 

to model them accurately. 

Hold’em API bridges that gap by combining: 

• Real-world hand history data (even when incomplete) 
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• A three-stage neural model of player decisions 

• Bayesian range updates to refine hidden information 

• Stake-specific behavior profiles across millions of hands 

By structuring opponent behavior as a sequential prediction problem—Fold/Continue → 

Raise/Call/Check/Bet → Bet Size—and exposing that logic through an API, we give developers, 

poker trainers, and AI researchers access to practical, realistic, and exploitable models of human 

behavior at the table. 

Whether you're building bots, simulating games, analyzing hands, or coaching players, Hold’em API 

offers a new foundation: 

not theory—but data. 

 

🔗 Learn More 

• 🔍 Visit: https://www.holdemapi.com 

• 📄 Docs: https://www.holdemapi.com/docs 

• 📬 Contact: support@holdemapi.com 

 

https://www.holdemapi.com/
https://www.holdemapi.com/docs

